
Generating Pseudo-Random Numbers 
by Shuffling a Fibonacci Sequence 

By Friedrich Gebhardt 

1. Summary. M. D. MacLaren and G. Marsaglia [2] have proposed to mix two 
pseudo-random number generators in the following way: The first generator is used 
at the beginning to fill an array with pseudo-random numbers; whenever a random 
number is needed, the second generator determines which element of the array is 
to be used and replaced by a new number from the first generator. In this study, 
only one generator is utilized for both purposes; moreover, the generator chosen (a 
Fibonacci sequence) is by itself a rather poor one. Nevertheless, the final sequence 
of pseudo-random numbers passed all statistical tests applied to it, including x2- 
tests of the maximum and minimum of two to ten succeeding numbers and tests 
applied to sequences immediately following a small number or two almost equal 
ones. 

2. Shuffling a Fibonacci Sequence. A Fibonacci sequence mod 2k is defined by 

a+1 -an + an-1 mod 2k. 

For our purpose, one has to assure that at least one of the starting values, a- 
and ao, is odd; otherwise any numbers a-, and ao may be chosen, e. g., the sum 
of part of the computer storage. Under such a sequence, an array of 16 storage 
locations is initially filled with a,, a2, - * aU6. Thereafter, whenever a random num- 
ber is needed, two new Fibonacci numbers, am and a.+l, say, are computed. Four 
digits of am determine one of the 16 storage locations. The number in that location 
is used as the random number, and a.+, is stored at that location. This generator is 
reasonably fast (though not quite as fast as a congruential generator), it may need 
a few more storage locations than other generators, but it passed all statistical tests 
to be described now, while with congruential or mixed congruential generators 
serious dependencies have been observed (M. D. MacLaren and G. Marsaglia [2], 
M. Greenberger [1]). 

The following x2-tests have been performed on 12,800 sequences of 10 pseudo- 
random numbers: uniform distribution of the first number in each sequence by 
dividing the unit interval into 16 and into 128 parts; joint distribution of the first 
two numbers by dividing the unit interval into 8 parts; joint distribution of the 
first three numbers by dividing the unit interval into 4 parts; distribution of the 
maximum, and of the minimum, of the first 2, 3, * , 10 numbers by dividing the 
unit interval into 16 parts in such a way that each part has probability 1/16 under 
the null hypothesis of uniform distribution and independency of the original num- 
bers. 

All these tests have been repeated nine times. In the first three runs, successive 
sequences of 10 numbers each have been used. In the runs 4 to 6, pseudo-random 

Received November 20, 1966. Revised February 20, 1967. 

708 



GENERATING PSEUDO-RANDOM NUMBERS 709 

numbers have been generated until a number less than 0.1 has been found; the 
next ten numbers have been used for the tests. In the last three runs, two succeed- 
ing numbers differing by less than 0.01 have been required for using the following 
ten numbers. In none of these tests significant departures from the null hypothesis 
have been detected. Out of all 198 x2-values, 11 fall below the lower 5%0 level (4 
of them below the lower 1%/ level) while 3 exceed the upper 5%, level (none of them 
the upper 1% level). Table 1 gives for some of these tests the probabilities of ex- 
ceeding the observed x2-values. Testing all 198 probabilities on uniform distribu- 
tion between 0 and 1 by dividing the interval into 10 equal parts yields X92 = 13.2 
which is below the upper 10% level (14.7). A comparison of the three sequences of 
three runs each reveals no peculiarities. 

These results agree with those of M. D. MacLaren and G. Marsaglia who used 
an array of 128 numbers and two congruential generators, one to determine a loca- 
tion in the array and the other to refill this place. 

TABLE 1. Probability in percent of a x2-variable exceeding the observed values. 
For different specifications of runs 1-3, 4-6, and 7-9, see text. 

Run 

Test 1 2 3 4 5 6 7 8 9 

Uniformity 72 40 43 74 12 79 99.4 12 65 
(128 intervals) 

Pairs 7 81 35 11 96.6 27 81 73 75 
Triples 45 32 9 71 92 69 6 50 1.2 
Maximum of 2 32 27 54 34 97.8 77 95.4 61 60 
Maximum of 5 87 77 86 23 47 3.9 18 99.1 60 
Maximum of 8 77 77 18 41 75 24 14 99.87 90 
Minimum of 3 91 75 23 31 60 45 92 67 14 
Minimum of 10 20 64 72 78 88 77 18 55 24 

Since the period of the pseudo-random number generator will be connected to the 
period of the Fibonacci sequence, (probably it will be much larger), the following 
theorem is of importance. 

THEOREM. Any Fibonacci sequence a,, a2, * mod 2k, defined by a.+, a=-, 

+ an mod 2 , satisfying also a, 1 mod 2 has the primitive period 3.2k- (i.e., there 
does not exist a shorter period). 

For a proof, see D. D. Wall [3]. 

3. Acknowledgement. The computations have been carried out on the IBM 
7094/I computer of the Deutsches Rechenzentrum. Each run needed about 3 
minutes. 

Deutsches Rechenzentrum 
6100 Darmnstadt, Germany 

1. M. GREENBERGER, "Method in randomness," Comm. ACM, v. 8, 1965, pp. 177-179. 
2. M. D. MAcLAREN & G. MARSAGLIA, "Uniform random number generators," J. Assoc. 

Comput. Mach., v. 12, 1965, pp. 83-89. MR 30 #687. 
3. D. D. WALL, "Fibonacci series moduilo m," Amer. Math. Monthly, v. 67, 1960, pp. 525-532. 

MR 22 #10945. 


	Cit r144_c152: 


